地址:江苏省海安县大公镇鹏飞工业区
电话:139-1285-1990
手机:13912851990(销售业务专线)
联系人:王家安董事长
传真:0513-88755141
邮箱:jspengfei@163.com
网址:www.jspengfei.com.cn
高炉矿渣是冶炼生铁时从高炉中排出的一种工业废渣,从化学成份来看是属于硅酸盐质材料,主要是硅酸盐与铝酸盐的熔融体,通过水淬冷却形成的粒状矿渣。粒化高炉矿渣具有结晶相及玻璃相二重性的性质,因此矿渣的活性既取决于析出晶体种类及晶体的数量,又决定玻璃态数量及性能,矿渣中含有较多的钙成分,在形成过程中生成了一些硅酸盐、铝酸盐及大量含钙的玻璃质(如C2S、CAS2、C2AS、C3A、C2F和CaSO4等),具有独立的水硬性,在氧化钙与硫酸钙的激发作用下,遇到水就能硬化,通过矿渣球磨机细磨后,则能使这个硬化过程可以大大加快。 通常矿粉在比表面积在350~500m2/kg时矿渣颗粒愈细,比表面积愈大,水硬性就愈高。矿渣在细磨后不仅增加了水化表面,而且在粉磨时破坏了高炉矿渣在形成时产生的表面致密壳体,从而使水化进程加快。因此当矿渣被粉磨到一定比表面积时活性才会急剧增加。但是矿粉比表面积如果>500m2/kg时,由于矿粉中<5um颗粒的微粉增多,应用于混凝土中一部分微粉会产生二次水化热,影响混凝土的质量。 矿渣微粉具有的潜在水硬性,成为水泥或混凝土的优质混合、掺合材料。用矿渣微粉作为混凝土掺合料不仅可等量取代水泥,而且可使混凝土的多项性能得到极大改善。用部分矿渣微粉取代水泥而拌制的混凝土具有:泌水少,可塑性好;水化析热速度慢,水化热小,有利于防止大体积混凝土因内部温升引起的开裂;矿渣微粉内的钙矾石微晶,可补偿因混凝土中细粉过多引起的收缩;硬化混凝土具有良好的抗硫酸盐、抗氯盐、抗碱-活性集料反应性能,并能使后期强度得以大幅提高,具有良好的耐久性。随着粉磨工艺的发展及混凝土预搅拌业的兴起,矿渣微粉作为水泥混合材料和混凝土掺合料得以广泛的应用。 随着粉磨工艺的发展及砼搅拌业的兴起,矿渣微粉作为水泥混合材料和混凝土掺合料得以广泛的应用。自上世纪80年代以来,英、美、加、日、法、澳等国相继制定了矿渣微粉的国家标准,使其应用得到了快速的发展。随着我国经济建设的迅速发展,科学技术的日益进步,大型建设工程不断增多,建筑物的大型化和高层化以及沿海、水、地下工程,均迫切需要高强型的高性能混凝土。上世纪九十年代初,在我国北京、上海,长沙等城市的一些工程中也已采用了矿渣微粉。试验和生产表明,比例约为20-30%的矿渣微粉替代525P.O水泥;比例约为30-50%的矿渣微粉替代525P.H水泥,适用于配制C30-C60混凝土。此外,用矿渣微粉和硅酸盐水泥混合制备的新型矿渣硅酸盐水泥,其性能与传统意义上的矿渣硅酸盐水泥有较大的不同,美国ASTMC989-94标准就规定可用矿渣微粉与硅酸盐水泥混合生产符合ASTMC595的矿渣水泥。将矿渣粉磨成比表面积在350m2/kg以上的微粉后掺入水泥,从而可以合理的控制水泥细度,实现硅酸盐水泥和矿渣微粉的最佳配比。由此配制的新型矿渣硅酸盐水泥,具有矿渣掺入量大(其掺入量可达45-65%),水泥标号高(能满足生产42.5号矿渣硅酸盐水泥的要求),水化热低、多项性能高等特点。普通硅酸盐水泥具有水化快(28天已水化70%-80%),早期强度高的特点,其粉磨比表面积一般控制在300-320m2/kg即可满足使用要求。而掺入较多矿渣混合粉磨的水泥却早期强度较低,后期强度较高(如180天后强度)。其原因是由于矿渣和硅酸盐水泥熟料的易磨性有较大的差异,熟料与矿渣一起粉磨时,由于矿渣相对难磨,其易磨性功指数约为水泥熟料的1.4倍(有资料显示,国内的矿渣易磨性功指数平均值为21.3kWh/t,水泥旋窑熟料平均值为15.9kWh/t)。造成水泥中的矿渣组分比熟料组分粗,其活性难以发挥,从而影响水泥强度。 有研究表明:传统的矿渣硅酸盐水泥比表面积为300m2/kg时,水泥中矿渣的比表面积仅约为220-230m2/kg。因此为了提高其早期强度,必须对其进行高细粉磨。而传统混合粉磨工艺要将掺入大量矿渣的物料粉磨至较高的比表面积时,将使磨机产量下降,粉磨能耗大幅增加,粉磨效率大大降低,对生产是十分不利的。因此,从提高粉磨效率、节能降耗、充分利用矿渣资源、提高经济效益等角度考虑,单独粉磨矿渣微粉具有十分重要的意义。开流矿渣微粉球磨机管磨机 目前,我国已成为钢铁生产大国,且分布较广,加之受水泥行业"上大压小”政策的影响,矿渣资源日益增多。矿渣的价格虽随着水泥价格上下波动,但其价格仅约为水泥熟料价格的1/4-1/3,加工成矿渣微粉后,可等量的替代水泥使用,利润空间巨大,经济效益显著。同时还可以减少因生产水泥所消耗的石灰石、粘土、燃煤、电力等资源及所造成的大气污染,具有良好的社会效益。 矿渣微粉的诸多优良性能及良好的效益,已逐步为人们所认识,已成为钢铁、水泥、建筑等行业以及中小投资者的一大商机。钢铁、水泥行业中实力雄厚者已捷足先登,纷纷斥巨资引进国外的先进设备生产矿渣微粉,抢占市场并已取得了效益。但我国地域辽阔,矿渣资源点多面广,各地区、各行业经济发展极不平衡,实力雄厚者毕竟是少数,多家企业和中小投资者还是选择国产设备生产矿渣微粉,创造机会参与市场竞争,并有燎原之势。 国内矿渣微粉生产工艺设备现状 1、辊式磨终粉系统主要有上海宝钢、辽宁鞍钢、山西长(冶)钢、湖北武钢、安徽马钢、海螺水泥等近10家国内特大型钢铁、水泥企业斥巨资自国外引进的菜歇磨等辊磨终粉磨系统。其特点是:①集烘干粉磨于一体、工艺流程简单。②粉磨效率高,台时产量大(可达50-120t/h),电耗低,系统电耗平均约为45kWh/t。③技术要求高,管理难度大,投资巨大,主机设备及配件依靠进口,固定费用高,资金回收期长,经济效益并不显著。 2、球磨机加选粉机组成的闭路系统该系统全部采用国产设备。工艺流程基本与闭路水泥粉磨系统相同。磨机规格有ф2.2×7m、ф2.4×(8-10)m、3.0×11m不等。其特点是:①需要另配矿渣烘干系统。②工艺流程复杂,影响设备运转率。③技术管理要求及投资较高。④矿渣微粉比表面积达420m2/kg时,粉磨系统电耗约75kWh/t。 3、开流管磨机系统。该系统与开流水泥粉磨系统基本相同。主要有普通管磨机,高效磨,高细磨等。磨机规格有:ф1.83×7m、ф2.2×7m、ф2.4×(8-11)m、ф3.0×11m等。其特点是:①需另配烘干系统,且对入磨矿渣水份要求严格。②工艺流程简单,操作管理方便,设备运转率高。③投资低,电耗高。④矿渣微粉比表面积达到420m2/kg时,粉磨系统电耗约为75kWh/t。 4、辊压机、分级机加开路筛分磨系统①需另配烘干系统,且对入磨矿渣水份要求严格。②工艺流程复杂,操作管理要求高。③投资高,电耗低。④矿渣微粉比表面积达到420m2/kg时,粉磨系统电耗约为55kWh/t。 5、立式磨加开路筛分磨系统①集烘干、预粉磨于一体、工艺流程复杂,操作管理要求高。②投资较高,电耗适中。③矿渣微粉比表面积达到420m2/kg时,粉磨系统电耗约为60kWh/t。 (二)开流矿渣微粉管磨机 由于目前国内尚没有专门针对矿渣粉磨特性及产品要求而开发的粉磨设备及工艺。按水泥生产方式粉磨矿渣,电耗偏高,影响了效益的发挥。因此我院历时两年,经反复试验,终于开发研制出适合市场需要,专门针对矿渣粉磨特性及矿渣微粉要求的投资少、电耗低、见效快的矿渣微粉生产系列设备—开流矿渣微粉磨机。开流矿渣微粉磨机是在我院开流高产高细水泥管磨机的基础上,专门针对矿渣粉磨特性及产品质量要求,以最大限度的挖掘磨机的研磨能力为目标,通过设置合理的仓数、仓长比及内筛分装置,调节、平衡各仓的能力和筛分效率;重新设计各仓的衬板结构,调整磨机的破碎、研磨能力;全部以中、小型钢段作研磨体,增大研磨体比表面积;采用溢流行出料篦板,提高料段比,延长物料的研磨时间等多项措施,以实现提高磨机粉磨效率和矿渣微粉质量、增产降耗的目的。 自2002年以来,我们先后利用上述技术措施对Φ1.83×6.4m、Φ1.83×7m、Φ2.2×7m、Φ2.2×11m、Φ2.4×8m、Φ2.4×11m、Φ2.4×13m、Φ2.6×13m、Φ3×9m、Φ3×13m、Φ3.2×13m等近40台开流管磨机上进行了改造,均取得了成功,为用户创造了良好的经济效益,也使此项技术日臻完善。鹏飞矿渣球磨机主要技术经济指标在同类型管磨系统中居国内领先水平。为矿渣粉磨提供了一种经济、可靠的设备,具有较好的经济效益和社会效益,可广泛推广应用。 从目前近30台开流矿渣微粉磨机的运行情况,无论从工艺流程、操作管理、产品质量、电力消耗、建设投资来看,磨机的性能与矿渣的粉磨特性相匹配,各项综合指标绝不亚于进口设备,广泛推广后必将产生巨大的社会经济效益。另在此值得一提的是:开流矿渣微粉管磨机的结构特点决定了其只要通过调整仓位、筛分装置和研磨体级配,就可成为理想的开流高细粉煤灰微粉管磨机,台时产量是矿渣微粉管磨机的3倍;或成为理想的开流高细钢渣水泥管磨机,台时产量是矿渣微粉管磨机的2倍。这两种磨机也必将为投资者带来良好的经济效益。江苏鹏飞集团回转窑窑炉水泥磨管磨机球磨机烘干机干燥机破碎机收尘器水泥水泥工艺水泥技术水泥粉磨水泥机械水泥设备水泥成套设备水泥机械设备水泥机械成套设备建材机械建材装备化工设备电力设备冶金设备矿山机械矿渣电力机械设备水泥生产线新型干法节能管磨机辊压机增湿塔钛白粉窑氧化球团工业炉窑中国水泥复合肥设备化工机械矿山设备收尘设备环保设备水泥工业设计院水泥装备石灰石石膏旋窑烧结炉矿渣磨原料磨生料磨风扫煤磨风扫磨煤磨造粒机破碎设备输送机电气控制系统国家级新产品优质产品高新技术产品冶金矿山重型设备重型机械磨煤机冷却机板式喂料机水泥成套设备出口水泥机械成套设备出口基地2500t/d新型干法水泥生产线5000t/d新型干法水泥生产线8000t/d新型干法水泥生产线节能粉磨设备....
球磨机系统广泛用于各种无机非金属矿的深加工。它用于氧化铁的超细粉磨,具有台时产量高,生产综合成本低,易于操作和管理,产品质量易于控制等优点,但也存在电机功率大,电耗高,对超细粉磨产品质量还难以达到要求等缺点。提高管磨机效率、降低电耗,是管磨机研究的最重要的课题。1 普通开流磨存在的问题 象粉磨任何物料一样,普通的开流管磨机粉磨氧化铁也存在台时产量低、电耗高等问题。在平均粒径为4.5μ时,平均电耗高达134kwh/吨。主要的原因是:现在用于粉磨氧化铁的开流管磨机技术都是套用粉磨水泥的开流管磨机,其衬板、隔仓板型式没有大的改变,更不用说考虑各技术参数与氧化铁的粉磨特性相适应的问题。其仓位长度分布、研磨体级配、隔仓板流通率等重要技术存在不合理的因素,因而导致了粉磨效率低,电耗高等问题。 根据我们对粉磨氧化铁的管磨机所作的调查和分析,发现它存在以下几个问题:⑴球、段仓间隔仓板篦孔尺寸较大(12mm),物料从球仓到段仓的流动几乎是畅通无阻,大量的粗物料(5mm以上)进入段仓,糊磨现象严重;⑵磨内物料流速太快,从而导致料球比过低。如Ф1.5×5.7m磨机正常停磨时,球仓内几乎没有存料。这样,生产时球砸球,不但效率低,而且磨音特别大,球耗及衬板消耗高;⑶磨内物料温度高达200~240。C,粉磨工况恶化。图1是南京磁材厂普通Ф1.5×5.7m氧化铁开流管磨机内物料筛余曲线。它表明:球仓的后半部分各个粒径的筛析曲线是一条接近于水平的线段,说明球仓后半部分的粉磨效率很低,仓位布置不合理。在段仓内2mm~5mm的物料筛余下降缓慢,说明钢段对这些物料的粉磨效果不佳。 图1 普通开流管磨氧化铁筛余曲线 总之,普通氧化铁开流管磨机存在较严重的粉磨工况紊乱和效率低的问题,“氧化铁超细粉磨技术”只有解决这些问题,才能大幅提高磨机产量,达到增产降耗的目的。2 氧化铁超细粉磨技术的原理 “氧化铁超细粉磨技术”的核心是磨内筛分装置,它能有效挡截对于钢段来说难于研磨的粗颗粒,从而优化了球仓与段仓的粉磨过程,大幅提高台时产量,降低电耗。2.1 球、段仓间增设高效物料筛分装置 实行磨内选粉,较粗的颗粒返回球仓继续粉磨,满足要求的细粉(0.5mm以下)进入段仓。管磨机粉磨效率不高。世界很多学者研究证明,管磨机实际的粉磨功率的利用,仅为总能耗的百分之三到百分之八。粉磨效率之所以不高,其原因是多方面的,而过粉磨是其中一个重要的原因。从粉磨工艺来考察,在粉磨过程中,物料在磨内沿着磨机从磨头到磨尾的纵长方向上的细度发展,由粗到细,直至出磨细度为合格料,似乎形成一个合理的细度梯度。若进一步深入分析,从纵向的每一点的横截面上来看,物料颗粒粗细悬殊,细度极不均匀。在段仓内,0.5mm以上的颗粒,有的大到5mm~10mm,这些大颗粒在段仓内,粉磨效率低,很难磨细,我们把它称之为钢段的“难磨物料”。为了达到出磨细度的要求,只好用过长的粉磨时间来完成。另一方面,在磨内沿着磨机纵向的粉磨物料,在细度发展过程中,由磨头到磨尾合格料的百分含量越集越大,但必须要等待全部物料达到细度指标合格后,方可排出磨外。这里的第一个问题是少量粗料过早地与细粉料一起混入下一个仓室,耗费过多的粉磨时间;第二个问题是磨内不能及时排出合格料,而浪费大量的能量,一般把它称为过粉磨。这两个问题之间存在一定的因果关系,并且从两个方面共同影响着“过粉磨”这一矛盾过程的发生与发展。入磨物料粒度越小,影响过粉磨性能也小,反之,入磨物料粒度越大,影响过粉磨性能也大。出磨产品细度越细,影响过粉磨越恶劣,出磨产品越粗,影响过粉磨性能得以缓和。这是因为入磨物料粒度大小,引起磨内粉料颗粒组成中的级别的粗细,以此影响着过粉磨,而使粉磨效率难以提高。总之,进入段仓物料较粗和出磨物料细度要求高,是氧化铁超细粉磨产生过粉磨和粉磨效率低下的两大常见原因。后者不可改变,而前者可通过一定的技术手段加以改造。“氧化铁超细粉磨技术”的设计原理,就是在球段仓间增设磨内筛分装置,实行磨内选粉,使进入段仓的物料不含粗颗粒。以此为中心,对各隔仓装置、各技术参数作相应的设计与调整,从而大幅提高粉磨效率,达到增产降耗的目的。磨内筛分也改变了球仓的物料分布,粗物料含量提高,便于集中破碎,提高了球仓的粉磨能力。在球、段仓间增设物料筛分装置后,它有效挡截粗物料,进入段仓的物料只有易于研磨的微粉(小于0.5mm),出磨细度易于控制,粉磨效率高。2.2料位调节 磨内料位调节是针对磨内物料流速过快或过慢而设计的一项技术。对氧化铁的超细粉磨,因其易磨性差,质量要求高,因而产量较低。如果控制不好,磨内料球比就会严重偏低,往往不及正常状态时的三分之一。因此,强化料位调节尤其必要。“氧化铁超细粉磨技术”根据对产、质量要求和粉磨物料的特性,使用溢流隔仓板、溢流出口篦板和挡料圈,有效控制磨内料球比在一个合理的范围以内,大幅提高粉磨效率,降低磨音,并降低研磨体和衬板的消耗。2.3 使用微型钢段 对于氧化铁超细粉磨技术,由于产品质量要求高,一般成品细度控制在20μm以下,平均粒径4μm~8μm,使用普通的钢段难以达到质量要求。但在普通的开流管磨机内,因为段仓内存在大量的粗颗粒,完全使用微型钢段效果也不好。而“氧化铁超细粉磨技术”,通过物料筛分装置分选后进入段仓内的微粉,颗粒的均齐性比较好,使用微型钢段粉磨效率明显提高。由于有针对性地采用了上述多项技术措施,从根本上消除了恶性粉磨现象,系统的粉磨效率提高30%~50%。3.“氧化铁超细粉磨技术”对氧化铁管磨机的改造 宝钢集团梅山钢铁集团公司(南京磁材厂),利用自身的铁鳞生产氧化铁磁铁粉,产品供不应求,效益良好。但该公司由于管磨机产量偏低,整体上没有达到应有的生产规模。为此,该公司做了多次试验,花费数十万元,效果始终不明显。最后,他们来到合肥水泥研究设计院,寻求解决技术难题。 针对以上问题,合肥水泥研究设计院把氧化铁的超细粉磨作为一项课题,组织技术攻关。根据对氧化铁粉磨特性的分析及其质量的要求,研制和开发了“氧化铁超细粉磨技术”。2004年对宝钢集团梅山钢铁集团公司四台氧化铁管磨机进行了“氧化铁超细粉磨技术”改造,经过2005年全年的生产总结,证明这项技术达到了预期的效果,本技术的研制是成功的。下表是其技术经济指标比较。 改造前后技术经济指标比较序号磨机规格m台时产量t/h电耗kWh/t研磨体消耗g/t改造前改造后改造前改造后改造前改造后1Ф1.5×5.70.91.1513210811007082Ф1.5×5.70.91.213210411007053Ф1.2×5.20.370.4813710511056904Ф1.2×5.20.370.481371051105690 可见,应用“氧化铁超细粉磨技术”后,平均台时产量提高30%,电耗下降22%,吨研磨体消耗下降37%。该技术的主要特点是:⑴在磨内球、段仓之间增设物料筛分装置,严格控制进入段仓物料的粒径。图2是氧化铁管磨机技改后的磨内筛余曲线,可见,进入段仓内的物料1mm以上的基本为零。 图2 开流超细管磨氧化铁筛余曲线 ⑵调整各仓仓长和研磨体的级配,使其与氧化铁的粉磨特性相适应。⑶控制好磨内物料流速,使正常生产条件下,料球比达到正常的状态。⑷加强磨内通风,降低磨内物料的温度。技改后磨机出口温度从2400C降到1900C。4 氧化铁超细粉磨技术经济效益分析4.1.增产效益(规模效益) 南京磁材厂在使用“氧化铁超细粉磨技术”后,平均台时产量提高了30%,解决了长期困扰企业发展的窑磨能力不平衡问题,使公司年生产规模相应提高了30%,公司年产量从1.8万t提高到2.33万t,年增产0.53万吨。以t利润300元计算,年增利润159万元。4.2.节电效益 技改前平均粉磨电耗134kWh/t,技改后平均105kWh/t,省电22%。以每t省电29度、每度电0.5元计算,该公司可年省电费23300t×29kWh/t×0.5元/度=33.785万元。4.3.节省钢材效益 由于台时产量提高,并改善了磨内的粉磨工况,大幅提高了料球比,降低了磨音,因而研磨体及衬板消耗大为降低。⑴研磨体消耗。技术改造前研磨体消耗1100g/t,改造后消耗700g/t,节省37%。该公司年省研磨体9.3t,按每吨0.55万元计,年省5.1万元。⑵衬板消耗:技改后不再发生空磨和球砸球、球砸衬板等现象,延长了衬板的使用寿命。到目前为止,技改时换上的衬板还光洁如新,其使用寿命暂时无法统计。即使按同等寿命计算,由于产量提高30%,每吨氧化铁所消耗的衬板降低23%。4.4.节省投资效益 由于“氧化铁超细粉磨技术”提高台时产量30%,对新建磁铁粉生产线可以大大节省投资费用。一是可以少买少用管磨机而达到同等的生产规模,二是可用较小规格的“氧化铁超细磨”取代较大规格的普通磨,达到同样的生产能力。这两种选择都可以大幅降低管磨机及其附属设备、磨房的基建投资。仅计算节电和节省钢材两项,保守的估计,用于“氧化铁超细粉磨技术技术”的投资只需半年时间即可全部收回。5 结语 由于“氧化铁超细粉磨技术”全面优化了粉磨过程,克服了普通管磨机内诸多不良的粉磨过程和现象,并针对具体矿物的粉磨特性、产、质量要求而设计多项合理的技术参数,因而大大提高粉磨效率,生产高质量要求的产品。通过生产实践的证明,“氧化铁超细粉磨技术”可比普通管磨机提高台产30%~50%,节电30%~40%左右,降低金属消耗40%~50%。 ....
增加预破碎工艺磨机的粉磨有效功率约1%,最高不超过9%,而破碎机的有效功率为30%左右,两者相差约10~30倍。采用“多破少磨”的工艺,即原有由磨内进行较粗物料的粉碎移到磨外由破碎机完成,这样可缓减磨机一仓负担,平均球径可适当下降,研磨功能增强,进入二仓的物料筛余下降,二仓负担减小,为二仓研磨体改用小钢段创造了条件,增强了研磨功能,保证了成品细度,颗粒级配合理且圆形度好,磨机台时产量提高约20%~30%,电耗下降(生料约5千瓦小时/吨,水泥约4千瓦小时/吨)。例如某厂原生料磨(Φ2.2×6.5m)入磨物料粒度25mm,平均为15mm,成品筛余为8%,台时产量25~28吨,电耗19千瓦时/吨,总装机容量530千瓦。在磨机前增设一台PSL70型喷射式破碎机、一台回转筛,入磨物料粒度降至5~7毫米,原有选粉机太小,制约磨机性能发挥,换成KX型高效高细转子式选粉机,总装机容量还稍小于530千瓦,生料成品筛余8%,台时产量为35~36吨,最高达38吨,电耗为14.7千瓦时/吨。每吨生料生产成本下降约2元,年节约近50万元。长期以来,一般按入磨粒度小于25mm计算产量。如果加置预粉磨设备,如辊压机、立磨、筒辊磨或如冲击破、细颚破、细锤破、反击破等细碎机,降低入磨粒度,则能明显提高台时产量。根据实验、统计、归纳、换算,当入磨粒度从25mm降至2mm,增产幅度可达44%。值得注意的是,当入磨粒度降低,各仓的长度和研磨体的级配应作相应调整(适当减小粗磨仓的仓长,增加细磨仓的仓长),否则难以得到预期效果。常用的预粉碎工艺主要有两种形式。其一是辊压机+球磨机粉磨工艺。水泥熟料在辊压机内受到强大的辊压力,从数十毫米被压碎至几个毫米甚至更细后再入球磨机。熟料颗粒经辊压粉碎的同时,内部也产生许多微裂纹,在球磨机内较容易进一步粉碎而很快进入粉磨阶段。在这种粉磨系统中,球磨机的主要任务只是粉磨,所以,粉磨仓可选用较小尺寸的研磨体,研磨体表面积的增大显然有利于粉磨效率的提高。采用这种工艺投资相对较大,技术要求高,但其设备及其配套技术已趋成熟,更适合于规模较大的立窑水泥厂的技术改造,必然会取得较好的经济效益。辊压机在预粉磨系统中有两种应用方式:直流式、循环式。直流式的预粉磨系统,经辊压机挤压后的物料全部喂入筒式磨机内进行打碎粉磨,一次完成;循环式的预粉磨系统,经辊压机挤压后的物料,有最多不超过35%的一少部分返回,与新料一起重新喂入辊压机再次挤压。这样既可以改善辊压机的咬合情况,减少料饼中残存的大颗粒,保证喂入筒式磨机内的物料小颗粒比例增大,稳定操作,又可以提高粉磨效率,降低粉磨能耗。筒式磨机可以采用开流操作,也可以采用圈流操作。筒式磨机可以是球磨机,也可以是管磨机,可根据具体要求确定。这种预粉磨系统可将现有的筒式磨机产量提高20%~30%,单位成品电耗降低4~8kWh/t,即能耗低约12%~25%。采用循环式的预粉磨系统比直流式的产量提高幅度大,节能率高,但系统稍微复杂,所用设备也较多。具体采用哪种,应根据各厂实际情况确定。 ....
钢渣处理一直偏重于铁的回收,这方面的工作是有成效的。即便是传统的湿法方式,虽然湿态磁选出的渣铁品位太低,同时湿法降低粉磨效率,限制了产品铁粉品位的提高,但铁的回收这一方面也基本可以说实现了有效利用。没有实现高附加值利用的是钢渣这部分。钢渣高附加值利用及零排放如果放弃湿法粉磨,也就放弃了目前较为成功的湿法回收铁的方式。干法粉磨回收铁可以达到目前湿法回收铁的水平吗?要实现钢渣高附加值利用及零排放,绝不可以仅仅局限于钢渣这一块。因为除了要做好钢渣这一块的攻关,还必须另外找到一种铁的回收方法,要求达到或超过目前湿法回收铁的水平。可以说,钢渣高附加值利用及零排放的开发工作,其中心在于钢渣这一块,而任务和压力也尽在钢渣这一块。钢渣高附加值利用及零排放的途径并不多。主要是:第一步,干式粉磨提取铁;第二步,继续粉磨,制成钢渣微粉,或采用“凝石”专利技术,加入“成岩剂”,与其他材料一起继续粉磨,生产名为“凝石”的胶凝材料。我们选择的钢渣微粉模式,是目前最简便有效的方案之一。这是一个明智的选择。《总体工艺方案》中,我们已经明确了两级粉磨(包括预粉磨一级粉磨)的工艺思路。其中一级磨机设计为闭路流程,二级为开路。而预粉磨一级方案,预粉磨选用V型选粉机(或筛机)形成闭路操作,终粉磨也为开路。如果二级磨机(终粉磨)采用闭路流程,一方面选粉效率大幅度下降,或虽然不是大幅度下降,但选型规格大几倍;另一方面,粗粉太细,没有适宜的磁选设备,磁选方案作不出,而不磁选呢,铁将在磨内持续积累,磨机粉磨能力持续下降,直至丧失殆尽。下面我们讨论一下二级磨机(终粉磨)采用闭路操作时的情况。二级磨机(终粉磨)的选粉机只能采用高效选粉机。根据选粉机的工作原理,如果保持单位气流中的物料颗粒数目相同,才可能保持相当的选粉效率。换句话说,要保持相当的选粉效率,选粉风量(选粉机规格)要与处理的粉料颗粒数目成正比。如果要取得与水泥选粉机相当的选粉效率,那么,钢渣微粉拟选型的选粉机规格要多大呢?下面,我们以上述观点来作出推算。钢渣微粉的比表面积为450m2/kg,假设水泥产品的比表面积为320m2/kg。首先由Anslem建议式计算出各自的特征粒径,再由RRB方程式经推导和求导得到颗粒百分含量与粒径的关系函数,然后得出粒径的颗粒数表达式,对此表达式进行积分,求得两种粉体的颗粒数目,进而计算出颗粒数目的比值。如表1。表1:450m2/kg的钢渣微粉与320m2/kg的水泥及380m2/kg的矿渣粉,单位质量的颗粒数比均匀性系数钢渣微粉:1水泥:1矿渣粉:1钢渣微粉:0.95水泥:0.95矿渣粉:0.95钢渣微粉:0.9水泥:0.95矿渣粉:0.95钢渣微粉:0.9水泥:0.9矿渣粉:0.9计算区间(μm)>0.5>1>0.5>1>0.5>1>0.5>1钢渣微粉颗粒数/水泥颗粒数3.752.743.122.392.391.952.662.13钢渣微粉颗粒数/矿渣粉颗粒数2.972.292.542.041.951.662.231.85可见,如果只计算0.5μm以上的颗粒,相同质量的钢渣微粉的颗粒数将至少是水泥的2.4倍。那么,选粉风量也将至少是2.4倍。以20t/h的台时产量计算,水泥选粉机可选N500,而钢渣微粉选粉机将选型为N1500。配套风机电机由37kW增至110kW(这还是比较保守的计算),选粉单耗也由3kWh/t,提高到7.5kWh/t(假设转子电机不变的情况下。其实电机可能要增容),净增4.5kWh/t。由于钢渣微粉0.5μm以下的颗粒数远多于水泥,实际的选粉风量可能更大,选粉单耗将增加更多。而且从另一方面来说,提供了足够的选粉风量,钢渣微粉也未必能达到水泥颗粒的分散效果。因为颗粒越细,越容易粘附在一起,也就越不易分散开来,选粉效率也越易下降。所以说,付出了较高的投资及电耗的代价,也是不可能完全消除选粉效率下降的趋势的。就算选粉机达到了预期的效果,但铁将在磨内快速积累,粉磨作业也将不能正常连续地进行下去。因为经过一段时间后,研磨体之间的大部分空间被铁粒子所占据,研磨体越来越难以接触到越来越少的钢渣颗粒以实施粉磨作用。第二级闭路作业、一级方案终粉磨闭路作业时,一定的时间后,磨内物料将全为铁粒子。下面以静态的方式,计算出了这个时间值。主要计算依据:1)磨内球料比统一按9kg/kg计算;2)第二级入磨物料含铁0.8%,产品含铁0.2%,磨内研磨体45t,台时产量按18t/h;3)一级方案终粉磨机入磨物料含铁1.2%,产品含铁也按0.2%计,研磨体64t,台产按16t/h计算。计算的时间分别为46.3h及44.4h。实际生产时,持续减少喂料,这个时间有所延缓。但其实磨内物料远未达到全为铁粒子的状态之前,已经完全无法正常生产,需要停车排除故障了。况且停车之前的持续减少喂料,本身也不是正常的生产操作状态!不论是两级粉磨还是预粉磨一级粉磨,终粉磨宜用开路流程,这一点已经明确了。但虽然同为开路作业,两种方案仍存在较大的差异。主要是作业量大有不同。二级磨担负的粉磨任务相对小得多,而一级方案中的磨机担负着绝大部分的粉磨任务。因而二级磨机的过粉磨现象轻得多,一级方案中磨机的过粉磨状态较为严重。两级粉磨与一级方案的不同之处还在于,一级磨与预粉磨的出磨物料完全不同。一级磨出料渣、铁完全分离,直接提取回收粒子铁,同时钢渣粉除铁彻底,因而细磨易于进行,微粉产品铁含量极低。预粉磨出料渣、铁基本未分离,为了保证终粉磨机的正常运行,必须适当增大磁力,以选出尽可能多的铁(能不能达到选后钢渣铁含量1%左右,很成问题!)。这将带起不少的钢渣粉;由于渣、铁基本未分离,选出渣铁时已经同时带出了更大一部分钢渣,带出钢渣的总比例将远高于以前计算的21.9%。浪费了钢渣粉不说,关键是渣铁的品位降低了。这些渣铁仍然需要球磨机(或钢渣半自磨机)进行粉磨,才能提取回收粒子铁产品。这增加了周转和工序不说,入终粉磨机的钢渣粉铁含量较高,使过粉磨状态本来就较为严重的磨机进一步浪费一定的粉磨功。两种方案的另外一个不同之处是,一级磨机与预粉磨机两者的研磨体总量相差很大,一级磨机由于研磨体较多,磨损对产、质量的影响较小,因而一级磨机工艺线稳定性较好;而预粉磨机磨损件太少,因而磨损的相对速度快,对产、质量的影响较大,所以预粉磨的工艺稳定性较差。特别是影响到终粉磨,难以调整并保持在较佳的工艺操作状态。唯一的显示预粉磨方案优越性的不同之处是,预粉磨采用不同于球磨机粉磨方式的挤碾压方式粉碎物料。节省了一定的能量,也可能使粉碎物料的易磨性有所改善。但估计这都被终粉磨较严重的过粉磨过程所抵消,甚至透支。这么说来,预粉磨一级粉磨方案,虽然也是有可行性的方案,但两级粉磨方案与之相比具有多方面的优越性。在常规水泥粉磨中,两级工艺比一级工艺,单耗略有提高。显然,粉磨320m2/kg的水泥,一级工艺是最佳的选择。但当一级工艺担负450m2/kg的粉磨任务时,由于450m2/kg比320m2/kg高出许多,情况发生了较大的变化。一级工艺不在最佳状态是不容置疑的,可能根本上就是在勉为其难。当由两级工艺来承担450m2/kg的粉磨任务时,各级的粉磨任务都相当于生料或水泥粉磨,看来更适宜一些。彼消此长,对于钢渣微粉来说,两级工艺与一级工艺的经济技术指标对比情况,与水泥粉磨时的情形相对照,已经发生了根本性的改变。我们的观点是,这时两级工艺将优于一级工艺。我们以为持此观点不会产生大的差错。粉磨需要两级工艺,而其中的一级符合除铁的要求。既然两方面的工艺任务同时得以满足,于是,我们将两级粉磨方案确立为钢渣微粉工艺的首选方案。预粉磨一级粉磨方案只能采用开路流程,产量低、能耗高,经济技术水平低;两级粉磨方案不仅是粉磨及除铁进程的需要,而且巧妙地采用了闭路工艺,大大提高了工艺技术水平,其思路是方案设计的精华之所在。而且还有,选粉机使一级磨机除铁和粉磨两方面作用相互促进、相得益彰;而从全局来看呢,则有回收铁、提高产量、节能降耗三方面的优势。这样一来,一级磨机闭路系统部分,实在是钢渣微粉工艺设计中的经典之笔。在前面的论述中,我们将两级粉磨方案确立为钢渣微粉的首选工艺时,实际上是在假设一级磨机为球磨机或钢渣半自磨机的情况下进行的。其他的磨机,如进口及引进国产立磨,作为一级磨机时,出磨物料虽然比“渣铁基本未分离”的情况好一些,但分离的效果实在也是很差的。而且极易出现过负荷,产生操作波动、磨机震动,故障率太高,磨辊及磨盘磨损也较大。虽然理论上较为节能,但从可行性方面来说,不能选用。至于华式立磨、柱磨机、辊压机、环辊磨以及鼎盛PCF细碎机等已被列为预粉磨主机。而且推荐技术相对成熟的华式立磨、柱磨机、辊压机等设备,这些主机的出料都是可以由V型选粉机分选的。至此,我们讨论的两级粉磨方案实际上已将一级磨机选定为球磨机或钢渣半自磨机,而二级磨机当然都是管磨机,并且后者管磨机的长径比要大一些。这两个两级粉磨方案,球磨机技术更成熟,因此球磨机–管磨机系统是第一方案;而钢渣半自磨机–管磨机系统是第二方案。在讨论的所有可行性方案中,华式立磨–长管磨被我们确立为预粉磨一级方案中的第一方案(因为我们用它做过钢渣粉磨的工业试验),因而是钢渣微粉工艺的第三方案。下面我们不妨着重对球磨机–管磨机两级方案的技术特点,简要地加以补充说明。一级球磨机出料细度设计为30~50%,容易达到,这时选粉机的粗粉细度为60~80%,方便了磁选作业的正常高效。再细,不利于磁选。粗一些的话,没能分离更细小的铁,不利于除铁;而且二级磨机粉磨任务重,综合能耗上升。所以说,一级磨机的出料细度具有双重意义。既决定着磁选作业是否正常,又决定着两级磨机的粉磨任务分配,从而左右整个粉磨过程的技术水平。在保证磁选作业简便高效的前提条件下,在一系列磁选工业试验的基础上,将一级磨机的出料细度尽量降低是我们设计的宗旨。一级球磨机为单仓,出料篦缝12~20mm,比喂料最大粒径大,避免了分离出的铁引起的堵塞,有效地保证了磨内料流通畅。同时由于篦缝不是太大,因而可以配入一定量的小规格研磨体,保证了足够的研磨能力从而保证了足够的出料细度。一级球磨机与旋风式选粉机组成闭路流程。选粉机除了前述报告中论述的除铁优势外,更具有的粉体分级本色功能,使一级磨机产量提高,单耗降低;同时使二级磨机入料更细更均匀,减轻了二级磨机的过粉磨现象。根据闭路系统产量提高20%,单耗降低15%的一般统计经验,一级磨机采用闭路流程后,钢渣微粉的粉磨电耗估计节省量为(15*E)%。显然,一级磨机吸收的功率越多(也就是出料越细),节能越多。比如,一级磨机吸收50%的粉磨功,则整个粉磨过程的单耗节省7.5%。另外,由于采用了一级球磨机闭路工艺,二级磨机的喂料已经很细,篦缝可以设计的很小,有利于细粉磨的进程。也同时使二级磨机采用合肥院高细高产磨有了可能。如果采用高细高产磨,增产、节能将达到最佳效果,而工艺也将是十分优秀的。关于钢渣矿渣复合粉提案,钢渣、矿渣混合入磨不是好的工艺路线。由于粉磨特性不同,分别设计不同的生产线才能实现最高的节能目标。适于矿渣粉磨的流行方案是进口及引进国产立磨终粉磨系统,磨内烘干,不单独设置烘干工序。虽然目前还存在一些技术问题,但基本上是成功的。定论的方案是立磨(或辊压机)预粉磨管磨机终粉磨系统,也可以不单独设置烘干工序。这些都是节能幅度较大的优秀方案。如果以钢渣微粉工艺线在不同的时段分别粉磨钢渣微粉及矿渣粉,再配制生产复合粉,情况又如何呢?假设矿渣粉细度为380m2/kg,相对易磨性指数为0.65;钢渣微粉细度450m2/kg,相对易磨性指数0.8;常规水泥细度假设为320m2/kg。根据水泥磨机单耗与比表面积的经验关系式,推导并计算出三种产品的单位粉磨电耗。如表2。表2:矿渣粉、钢渣微粉、水泥单位粉磨电耗计算值粉磨产品矿渣粉钢渣微粉水泥单耗(kWh/t)64.265.033.4可见,从粉磨单耗方面来说,矿渣粉其实需要与钢渣微粉同样的粉磨进程才可以制成,它们的粉磨任务几乎都是水泥的两倍,所以用两级水泥磨机串联生产再合适不过,也就是说两级粉磨比一级方案其实更适合于它们,正如前面所说的那样。但从磨内物料的颗粒分布方面来看,矿渣粉与钢渣微粉的粉磨进程还是存在一定的差别的。江苏鹏飞集团日产8000吨级以下回转窑水泥机械成套设备生产制造、安装调试。鹏飞主导产品:回转窑、球磨机、冷却机、增湿塔、收尘器、烘干机、破碎机、立式磨、复合肥设备。江苏鹏飞鹏飞集团江苏鹏飞集团回转窑窑炉水泥磨管磨机球磨机烘干机干燥机冷却机破碎机收尘器水泥水泥工艺水泥技术水泥粉磨水泥工程水泥机械水泥设备水泥成套设备水泥机械设备水泥机械成套设备建材机械建材装备化工设备电力设备冶金设备矿山机械 ....
近年来对管磨机采用磨内筛分技术进行改造(亦称高产高细磨内改造技术)逐步受到业界人士的重视,主要是由于在这项改造技术中不需要增加设备和动力,只是对磨机内部结构进行改造,可以达到提高产量,降低电耗,提高成品比表面积的目的,加之投入少,技术改造时间短,所以很受欢迎。采用磨内筛分技术对球磨机进行磨内改造的基本思路是:在普通管磨机内设置筛分装置取代原有的隔仓装置,运行中对前仓物料向后仓流动时进行强制筛分,拦截大颗粒,让这些大颗粒仍然回到前仓,继续用大尺寸的钢球进行破碎,合格的细料进入后仓。同时根据物料本身的特性、粒度、工艺状况,各仓配以合适球、段级配。这样前仓的料垫作用大大减弱,破碎能力增强,而细磨仓可采用大表面积的小规格研磨体,大大提高磨机的研磨能力,从而获得高产量、高比表面积的成品,最大限度提高磨机粉磨效率。采用磨内筛分技术进行磨内改造实质是:强化了物料在磨内的分级功能。实现不同粒径的物料可以及时进入相应的粉磨仓中,从而可以使各种不同粒径的物料在最佳的粉磨机理的条件下完成粉磨作业,从而提高粉磨效率,降低能耗。下面对采用磨内筛分技术进行磨机改造的相关技术进行详细的介绍和分析:一、筛分装置筛分装置是磨内筛分技术的核心装置,该装置性能的好坏是普通管磨机改造能否成功的前提。筛分装置性能优劣主要从这几个方面来考虑:一是筛分动力要大。由于该筛装置没有额外动力源,筛分过程的运动和动力是分别利用球磨机的自身旋转和被筛分物料自身的重力和侧压力来实现物料的筛分作业的。如何充分利用物料本身的重力和侧压力可以通过筛分结构的不同设计来调节,因此好的结构可以加强筛分动力,提高筛分效果。二是过料能力强,有好的筛分动力不一定过料能力就好,还必须有较大的筛分面积,使粗细料尽快筛分;三是通风能力强,最大限度改善磨内通风,降低磨内温度,防止磨内不良现象发生;四是自洁能力强,消除筛分装置的堵塞现象;五是料位调节功能,可以使球仓保持最佳的料球比,以充分发挥球仓的粉碎效率;六是使用寿命长,这点往往在改造过程中被多数使用厂家所忽视。中国大部公司所采用的筛分装置大致分两类,一类是扬料板不带筛分板,使用寿命较长。但筛分功能由扇形筛分板完成,由于筛分动力为侧向堆积压力,筛分不彻底,筛分性能较差;另一类是扬料板带筛分板,筛分动力为重力,筛分彻底性能好,但磨损大、使用寿命短。由于中国制造能力的限制,筛分板一般用S=1mm不锈钢板或S=3mm冷轧钢板制作,寿命一般在6—8个月。1.1、国内外现有筛分装置的结构1)锥形筛板型筛分装置(1号)该筛分装置由进料篦板和出料篦板、焊接在隔仓板架上的导料板、双向导料锥以及联接螺栓组成,结构如图1所示。前仓内已磨好的物料通过进料篦板进入扬料板上,随着磨机的回转被提升导向,落到锥形筛板上,细料通过锥形筛板的筛缝落到卸料锥上,流入后仓。而未通过筛缝的粗料,只有沿着锥形筛板的表面流回一仓内重新粉磨。2)微介质型筛分装置(2号)丹麦史密斯公司制造的康必丹磨又称微介质磨,其适用的筛分装置又称微介质型筛分装置,结构如图2所示。进料侧装有扇形的进料篦板,其后装有一层细筛板,隔仓板中心位置装有1个中心卸料锥,进料篦板与细筛板之间有一定的空间。支撑板为盲板,扇形出料篦板保护支撑板不被磨损。当磨机工作时,前仓物料通过进料篦板的缝隙,进入和细筛板之间的空间,随着磨机的回转,细料穿过细筛板的筛缝落到扬料板上再被提升到上部,然后经过中心卸料锥的出料端泻落到后仓;而粗料和小研磨介质等也被类似于扬料板的小抄板带到高处,然后经过中心卸料锥返回到前仓,继续粉磨。3)扇形筛板型筛分装置(3号)中国的合肥水泥研究设计院首先推出这种筛分装置,称其为内选粉筛分装置,目前中国市场上绝大多数公司均采用这种结构,其结构如图3所示。其进料篦板的篦缝一般为同心圆环形或平行于弦长的直条形,篦缝较宽。紧贴进料篦板装有形状与其相同扇形筛板。出料篦板为盲板,或者带有辐射状的篦缝,缝宽尺寸较小。筛分装置与扬料板有分离组合型的,有组焊为整体的。前仓物料在磨体回转作用下,进入进料篦板的宽篦缝内,小于扇形筛板筛缝的物料进入隔仓板内,在扬料板带动下,流向卸料锥的锥面泻入后仓。大于筛缝的物料,从进料篦板的篦缝返回前仓。4)筛分仓型筛分装置(4号)如图4所示,在扇形筛板型筛分装置的基础上,为了增加筛板过料面积,提高筛分能力,从结构上进行了改进,将筛板与进料端篦板拉开一定距离。在进料篦板与筛板间形成一个小空间,使粗细料在这个空间内进行筛分。笔者把它叫做筛分仓,把这种筛分装置称为筛分仓型筛分装置。其筛分机理与扇形筛板型隔仓板基本相同,不同的是粗细料经进料篦板的宽篦缝进入筛分仓内进行筛分时,粗料不再从篦缝返回前仓,而是通过扬料板带动,流向卸料锥泻入前仓。由于筛板离开了进料篦板,被进料篦板篦筋所挡住的筛板筛缝也可发挥筛分能力。1.2、国内外现有筛分装置的性能分析比较1)筛分动力以上几种筛分装置,物料进入和通过进料篦板的动力即物料侧向堆积压力和研磨体的冲击力,都是一样的。但物料通过筛板的动力却有所不同。对于3号而言,细物料通过筛板的动力与物料通过进料篦板的动力相同。对于4号而言,细物料通过筛板的动力只有物料的堆积力,并且由于筛分仓空间很小,物料也不会瞬时充满,所以物料的堆积压力作用也相对较弱。对于2号而言,细物料通过筛板的动力介于上述两者之间。对于1号而言,细物料通过筛板的动力则完全不同,细粉在重力作用下通过筛板,其动力是重力。比较两种筛分动力,重力的筛分作用必然大于物料侧向堆积压力筛分的作用,其筛分效率也必然大于后者。不过由于筛分装置内空间有限,1号装置的筛板面积很小,总的过料能力还不如其它类型的筛分装置。2)过料能力筛分装置的过料能力主要取决于筛板上与物料接触的筛缝总面积和筛分动力。筛分动力相同,筛缝面积越大,过料能力越强;筛缝面积相同,重力筛分比侧向堆积压力筛分过料能力强。1号筛分装置的筛板全部筛缝都与物料接触,但总面积过小,虽然重力筛分,筛分效率高,但总的过料能力弱。3号筛分装置筛板紧贴在进料篦板后面,约有一半的筛缝面积被篦板挡住了,过料能力降低。2号筛分装置过料空间较小,过料能力和3号近似。4号筛分装置筛板和进料篦板有一定的距离,全部筛缝均能发挥过料作用,过料能力是上述中最大的。表1是以Φ2.2m磨机为例,各种筛分装置的过料面积,类型筛分面积(mm2)占截面比例(%)筛分动力锥形筛板型841002.00重力微介质型4630209.70侧向堆积压力扇形筛板型4020509.12侧向堆积压力筛分仓型103030023.20侧向堆积压力3)自洁能力上述几种筛分装置中,进料篦板篦缝最大为20mm,最小的只有12mm。在磨机运行中,与篦缝尺寸相当的物料和破碎的研磨体,极易卡在篦缝内引起堵塞,减小篦缝面积,甚至达到70-80%的篦缝被堵塞,严重影响筛分装置的过料能力。物料或破碎的研磨体卡入篦缝后,能在其它物料或研磨体冲击下脱离篦缝,称为筛分装置的自洁能力。2、3号筛分装置的筛板紧贴在篦板后面,进入篦缝内大于筛缝的物料必须沿篦缝返回或逸出。3号筛分装置中,尽管篦缝成倾斜状,以利于进入篦缝的大颗粒物料(含研磨体)在回转到筒体上部时在重力作用下从篦缝中脱落。但大于篦缝的物料或研磨体位于筒体下部时,在物料挤压或研磨体冲击作用下挤入篦缝后,没有一定的外力作用不易逸出,且会越卡越多,影响过料能力和通风,所以这两种筛分装置自洁能力较差。1、4号筛分装置的筛板和篦板有一定距离,使篦缝完全形成通孔,卡入篦缝的物料或研磨体一般会在物料挤压或研磨体冲击下通过篦缝进入筛分仓内,在扬料板、卸料锥作用下返回前仓。所以这两种筛分装置自洁能力相对较强。4)通风能力早期的筛分装置出料端篦板为盲板结构,除了各篦板相邻处的装配间隙外,只有中心锥的通风板可以通风。如2、3号筛分装置通风能力很差。1、4号筛分装置的出料篦板上设置了辐射状篦缝,但为了阻挡后仓研磨体进入筛分装置,一般篦缝宽度尺寸设计很小。后仓研磨体稍经磨损容易卡入篦缝内,减小篦板通风面积。5)料位调节能力上述四种筛分装置中,只2号筛分装置具有料位调节功能,其他都没有。1.3、GA型筛分装置盐城大志环保科技有限公司的AET研发中心利用日本独资企业的优势,根据中国管磨机的实际情况,吸收日本先进的技术,运用大型计算机集成系统模拟磨机运行设计出适用于中国管磨机改造的高产高细磨内筛分改造技术以及GA系列筛分装置,1)结构及筛分原理(如图5所示)其进料篦板的篦缝一般为同心圆环形或平行于弦长的直条形,篦缝宽(一般大于最大的物料粒径)。紧贴进料篦板装上带有筛板的组合扬料板,筛板筛缝大小根据不同客户的具体情况确定,扬料板后面装有形状与进料篦板相同,带有一定筛缝的扇形筛板,筛缝大小根据不同客户的具体情况确定。出料篦板带有辐射状的篦缝,在扇形筛板后面,和扇形筛板之间有一定空间。主要支撑和保护扇形筛板。前仓物料在磨体回转作用下,从进料篦板的宽篦缝进到扬料板上,扬料板带动粗细粉混合料沿筛分板流动,小于筛板筛缝的物料在重力作用下进入扬料板的细粉流动空间通过卸料锥细粉出口进入后仓,大于筛缝的物料,从卸料锥粗粉出口返回前仓,同时细粉还可以通过径向筛分板直接穿过出料篦板进入后仓。2)性能从筛分动力上讲,在扬料板上的筛分属于重力筛分,筛分效率特别高;在径向筛分板上筛分属于侧向堆积压力筛分。所以和上述四种筛分装置相比具有筛分动力大,筛分效率高的优势。从过料能力上讲,GA筛分装置比上述四种筛分装置中过料能力最好的4号筛分仓型筛分装置的过料面积要多出45%左右,而且多出的部分其筛分动力为重力,试验证明其筛分效率是4号筛分仓型筛分装置3.4倍。就自洁能力而言,GA筛分装置的进出料篦板采用大篦缝设计,篦缝宽度分别大于前后仓的最大物料粒径,物料可自由通过篦板进入筛分仓进行筛分,而不会堵塞篦缝,所以GA筛分装置的自洁能力是最好的。从通风能力讲,GA筛分装置整个截面处于全贯通状态,通风阻力小,不堵塞,通风面积大,所以通风性能特别优良。GA筛分装置可以根据用户需要进行前后仓的料位调节。GA筛分装置和其他形式的筛分装置相比另一个优势在于使用寿命特别长,是一般筛分装置的3倍以上。GA筛分装置进、出料篦板采用中合金钢油淬火工艺,筛分板采用钼铬锰合金板加工,其他部分采用耐磨材料加工。二、磨内结构及相关工艺参数的确定有了好的筛分装置只是普通管磨机改造成筛分磨的一个基础,更重要的是磨内结构及相关工艺参数的确定,它直接决定了磨机改造的成败。为了科学地进行磨内改造,盐城大志环保科技有限公司AET(无锡)技术研发中心在深入的理论研究的基础上进行大量的试验、数据处理和经验总结,提出筛分磨工艺参数确定的科学理论和方法,并在实践中取得了良好的效果。2.1、筛分循环负荷率和筛分效率1)筛分循环负荷率筛分循环负荷率是指筛分装置的返回前仓量F和通过筛分孔进入后仓的量G之比。设:W---筛分装置喂入量,吨/小时;a---筛分装置喂入料细度(通过筛分装置筛孔的百分数);F---筛分装置返回前仓量,吨/小时;b---筛分装置返回前仓料细度(通过筛分装置筛孔的百分数);G---筛分装置进入后仓量,吨/小时;c---筛分装置进入后仓料细度(通过筛分装置筛孔的百分数);=1L---筛分循环负荷率,根据物料平衡得W=F+GW.a=F.b+G.c二式联立得(F+G).a=F.b+G.cL=F/G=(c-a)/(a-b)=(1-a)/(a-b)2)筛分效率筛分效率是指筛分通过量与筛分装置喂入量中可以通过筛孔量之比.其计算公式如下:X=G/(F+G).a=〔(a-b)/a.(1-b)〕×100式中X---筛分效率,%。筛分循环负荷率过低,前仓内物料流速慢,“料垫”作用大,不利于发挥筛分的产量高,电耗低的特点。筛分循环负荷率过高,筛分效率低,易堵塞。不利于前仓的破碎,易发生饱磨等不良现象。因此合理的筛分循环负荷率对于管磨机磨内筛分改造很重要。表2各种不同的管磨机粉磨系统进行磨内改造的筛分循环负荷率一般可考虑如下:筛分循环负荷率(%)开流粉磨系统圈流粉磨系统一、二仓间二、三仓间一、二仓间二、三仓间锥形筛板型筛分装置110~12575~9095~10565~755微介质型筛分装置65~7542~5560~7035~45扇形筛板型筛分装置65~7542~5560~7035~45筛分仓型筛分装置50~6235~4242~5030~38GA型筛分装置38~4522~3030~4215~222.2、仓长管磨机进行磨内筛分改造,确定仓长非常重要。仓太长,筛分循环负荷率过低,不利于发挥筛分的产量高,电耗低的特点。仓太短,筛分循环负荷率过高,筛分效率低,易堵塞,不利于前仓的破碎,易发生饱磨等不良现象。而且每个仓仓长确定的方式和侧重点是不一样的。例如一个三仓管磨机进行磨内筛分改造,而且一、二仓之间和二、三仓之间都采用筛分装置。在进行改造前首先必须对该磨机的工艺状况有一个详细的了解,做一个筛余曲线,同时对磨机不同部位进行物料粒径分析。在确定一仓仓长的时主要考虑一仓的破碎效果。一般对于Φ2.6m以上的磨机的一仓仓长L和直径D比值L/D=0.95-1.05比较适宜,入磨物料粒度越小则越短。对于小于Φ2.6m的磨机的一仓仓长L和直径D比值L/D=1.1-1.25比较适宜,入磨物料粒度越小则越短。对于磨前有预粉磨的粉磨系统,则需要根据所筛分物料某一粒径的含量和筛分循环负荷率来确定。在确定二仓长度时,要根据一、二仓筛分装置的筛分粒径和二、三仓的筛分装置的筛分粒径及由表2确定一个适宜的筛分循环负荷率,运用磨机原来的筛余曲线进行确定。对于二仓管磨机在确定一仓长度时主要根据入磨物料的粒径和一、二仓筛分装置的筛分粒径,由表2确定一个适宜的筛分循环负荷率,运用磨机原来的筛余曲线进行确定。对于圈流粉磨系统的仓长的确定方法和开流系统类似,只是选择筛分循环负荷率不同而已。2.3、筛分装置的筛径筛分装置的筛径的确定主要由前仓长度、入磨物料的平均粒径、筛分循环负荷率和物料的水分和物料的种类等因素决定。例如对于三仓水泥磨而言,一、二仓筛分装置的筛径可由改造前的筛余曲线、拟确定筛分装置部位的物料粒径分析和筛分循环负荷率来确定。二、三仓筛分装置的筛径则是由物料的易磨性、第三仓的长度和研磨体及级配、出磨物料的比表面积决定。主要考虑控制入第三仓物料的最大粒径,使得物料通过第三仓研磨后达到比表面积要求,同时又保证适宜的筛分循环负荷率。圈流系统的筛分装置的筛径一般比开流系统的筛分装置的筛径要大;物料水分大,则筛分装置的筛径相对较大;筛分性能差的筛分装置的筛径要大。生料磨一般不宜进行磨内筛分改造,特别是二、三仓之间一般不可采用筛分装置,主要原因是水分大筛孔容易堵塞。一、二仓如采用筛分装置,筛径一般不宜小。对于矿渣磨而言,由于矿渣本身易磨性差,不易堵塞。所以筛分装置的筛径可以取小一些,特别是筛分装置的筛径要通过试验确定,否则可能造成出磨矿渣粉比表面积达不到要求。2.4、钢球、钢段级配普通管磨机经过磨内筛分改造后,使物料在磨内各仓用相应尺寸的研磨体逐级粉磨,并及时逐级筛分。各个仓内的物料粒径组成发生了变化,同时物料流速加快,产量增加,因此各个仓的研磨体级配要作适当调整。对于三仓磨而言,经过磨内筛分改造后,一仓内料垫作用减弱。主要目标是将入磨物料迅速地破碎到某一粒径(由筛分装置的筛径决定),因此在研磨体的级配上以二到三球级配较合适,可以去掉部分小球,充足部分大球。对于二仓而言,由于物料经过筛分,所以物料粒径很整齐,没有大粒径物料,粉料也会很快被筛分进入三仓。所以的研磨体中大的部分要剔除,采用适合的研磨体,级配以三级适宜,以较大研磨体为主;对于三仓而言,主要任务是将一定粒径的粗料一次性研磨成一定比表面积的成品,所以增加研磨能力是主要调整目的。一般采用中段或微段或小钢球,以二级级配为主。同时可以加装活化衬板以提高研磨能力。当然,球段级配的调整是一个很复杂的过程,要根据各个水泥生产厂家的具体情况实施,不能一概而论。而且调整的幅度不宜过大。三、性能及效果分析4.1与普通高细磨和其他型式筛分磨相比1)普通高细磨的筛分腔窄,球仓的小钢球或破球以及块状物料很容易进入筛分腔而卡住,使立筛板变形或破损,影响筛分效率,而GA筛分装置不存在这种缺陷结构;2)普通高细磨的筛分依赖于内置的“立筛板”,物料从前仓到后仓的流动完全依赖磨内物料料面差来完成,是一种侧向堆积压力作用的“静态”筛分;而GA筛分装置采用的是滚动筛,物料在滚动筛上运动的同时进行筛分,因此是一种重力作用的“动态”的筛分,筛分效率更高。3)普通高细磨的筛分板是平面结构,很容易变形和破损,而GA筛分装置中用于筛分的滚动筛是立体结构,难于变形和损坏。4)GA筛分装置的物料分选系统设计了径向立式筛板,取消了普通高细磨中的盲板,这一结构设计对解决长磨机粉磨过程中糊球、糊段、通风不良尤为有利。4.2与闭路磨相比它的高效率主要来源于大比表面积的微锻和内置的物料筛分系统,综合两者的特点具有相得益彰的效果,它与传统的闭路磨相比有着不可争辩的优势,主要体现在以下几个方面:1)投资方面 以φ2.2×7.5m磨机为例,闭路磨系统包括选粉机、提升机、回灰输送设备以及土建设施投资大约在50万元左右,而选择磨内筛分改造技术进行改造,仅需9万元左右(主要包括:GA筛分装置、GA活化装置、GA磨尾卸料装置)。新用户磨机本体部分外购,“内脏”由盐城大志环保科技有限公司配置。2)磨机产量方面 普通闭路磨由于选粉机选出的粗粉进入球仓,对球的冲击形成缓冲效应,削弱了球的破碎能力,影响磨机产量的发挥。而磨内筛分改造技术打造成的筛分磨的破碎仓和研磨仓有着严格的分工。球仓主要“破”,锻仓主要“磨”。内置物料筛分系统,能及时将破碎仓的细粉选出并送入研磨仓,提高球仓及锻仓的破、磨效率。一般情况下,在同样比表面积条件下,对普通闭路磨运用磨内筛分改造技术改造,产量都有较大提高。3)节约能耗方面闭路磨的生产工艺相对复杂,需要一台选粉机和2~3台提升、输送设备,因此需提供大量的电能来支持这些设备的正常运行。运用磨内筛分改造技术打造筛分磨为开路生产,内置GA筛分装置随磨机筒体运转无须动力。以φ2.2×7.5m闭路磨为例,选粉机加上提升及输送设备总装机容量85kw左右,改造后每天节约电费800元,年费用25万元左右。4)提高比表面多掺混合材方面 普通的闭路磨(指配转子式选粉机或离心选粉机)水泥比表面积在300㎡/㎏左右。而运用磨内筛分改造技术打造成的筛分磨的粉磨工艺为开流生产,加上微型钢锻的高效率研磨,水泥比表面积都可确保340㎡/㎏以上,水泥三天强度提高3~5Mpa,至少可多掺混合材5%左右,吨水泥生产成本下降5元左右。5)改善水泥颗粒级配,提高水泥品质 水泥颗粒级配对水泥性能有直接的影响,特别是32um以下颗粒含量对强度增长起主要作用,而大于65um的水泥颗粒难于水化,活性很小最好没有。运用磨内筛分改造技术打造成的筛分磨可改善水泥颗粒级配,提高水泥品质。以φ2.2×7.5m闭路磨机为例,对改造前后的水泥产品分别取样,测试结果如下:改造前细度控制≤3%,产量在16.5t/h左右,32um以下水泥颗粒累积分布为54.93%,大于65um的水泥颗粒累积分布为21.98%;改造后为开路磨,在同样工况条件下细度控制≤4%,产量在17t/h左右,32um以下水泥颗粒累积分布为92.91%,大于65um的水泥颗粒为2.3%。水泥三天强度平均提高4.7Mpa。6)物资消耗和设备运转率方面 由于闭路粉磨系统工艺相对复杂,设备增多,人力、物力、财力消耗在所难免。取消选粉机运用磨内筛分改造技术打造成的筛分磨为开流磨,简化了工艺流程,设备运转率大幅度提高。7)研磨体消耗方面 由于锻仓主要以研磨为主,加之微锻选用优良材质,微锻的消耗相当低,约30克/吨水泥左右;微锻的冲击力小,因而锻仓衬板的磨损亦相应减小,钢球的消耗与普通磨机差不多。8)劳动强度及劳动环境 取消选粉机开路生产,无粗粉回灰,磨头的回灰扬尘没有了,配料现场的工作环境得到了很大改善;再有进入锻仓的物料经过严格分选,磨尾的笼筛出口再也见不到粗颗粒的熟料和其它物料,劳动环境和劳动强度大为改观。四、磨内改造过程中的注意事项在中国管磨机磨内改造中失败的案例较多,或者说双方合作满意的较少。主要是由于磨内筛分改造成是一项系统工程,全面掌握有很大难度。就我们调查后发现失败的原因大致有以下几个因素。1、筛分装置的性能差,对整个磨内改造技术不完全掌握。只是更换筛分装置,没有对整个系统的工艺参数作适当调整,造成技改效果不明显,甚至出现负作用。2、改造前双方交流缺失。业务人员为了做成业务,片面夸大磨内筛分改造的效果。结果改造后实际的效果和所说的效果相差过大,造成双方合作不愉快。实际上对于运行正常的管磨机进行磨内筛分改造产量提高一般在15-20%左右,降低电耗15%左右。3、改造过程中双方配合不协调是失败的另一个很重要的原因。从事磨内筛分改造的公司掌握更多的是共性的东西,在改造过程中必须得到生产厂家的大力配合。4、对开流系统和圈流系统的筛分改造是不同的。用开流系统的筛分技术对圈流系统改造是很难成功。五、结束语磨内筛分技术提高粉磨效率是不容置疑的。但正确使用要有一定科学性和系统的协调性,使用不当不仅不能起到提高效率的作用,反而会降低效率,甚至导致粉磨作业不能正常运行。磨内筛分技术的应用并不单纯是将原有的隔仓板更换成筛分装置,该项技术应该理解为粉磨系统技术。因此使用磨内筛分技术时应从如下几个方面来全面考虑:1、粉磨对象的各项属性、粉磨设备的规格的研究和把握;2、磨内筛分装置结构的选择和位置的确定;3、粉磨系统形式、设备的组成和各工艺参数的研究和确定。所以说这项技术是一个具有系统性特征的技术,而不是单纯的筛分装置技术。磨内筛分技术对于不同的用户、同一用户不同的粉磨系统的组成,所选用的结构和工艺参数是不相同的,必须针对每一个粉磨系统进行专门的研究和进行专项方案设计。这个方案设计不仅仅表现在项目实施的初期,更重要的是体现在现场的安装和调试的过程当中,也可以说这项技术是粉磨系统的现场调试技术。这项技术的使用对方案设计人员和现场安装和调试人员有着很高理论基础和实践经验的要求。一方面从理论上要求技术人员对筛分理论、磨内工艺参数研究、粉磨系统的组成、粉磨机理有比较深刻的研究和理解;另一方面要有丰富的实践经验、现场分析问题和现场决策的能力。应该说这才是这项技术价值的真正体现。 江苏鹏飞鹏飞集团江苏鹏飞集团回转窑窑炉水泥磨管磨机球磨机烘干机干燥机破碎机收尘器水泥水泥工艺水泥技术水泥粉磨水泥工程水泥机械水泥设备水泥成套设备水泥机械设备水泥机械成套设备建材机械建材装备化工设备电力设备冶金设备矿山机械矿渣电力机械设备水泥生产线新型干法节能管磨机辊压机增湿塔钛白粉窑氧化球团工业炉窑中国水泥复合肥设备化工机械矿山设备收尘设备环保设备水泥工业设计院水泥装备水泥标准水泥情报水泥价格水泥熟料硅酸盐石灰石石膏旋窑烧结炉矿渣磨原料磨生料磨风扫煤磨风扫磨煤磨造粒机破碎设备输送机电气控制系统国家级新产品优质产品高新技术产品冶金矿山重型设备重型机械磨煤机冷却机板式喂料机水泥成套设备出口水泥机械成套设备出口基地2500t/d新型干法水泥生产线5000t/d新型干法水泥生产线8000t/d新型干法水泥生产线节能粉磨设备....
水泥炉窑余热发电汽轮机设计技术 目前国内先进的水泥生产线,仍然有大量350℃以下的低温余热不能完全利用,回收水泥生产过程中的低温余热,用来发电,可有效减少水泥生产过程中的能源消耗,同时降低了废气排放的温度,有效的减轻水泥生产对环境的热污染,具有显著的节能和环保意义,符合循环经济和可持续发展的战略方针,有很大的推广价值和应用前景。1.水泥窑低温余热汽轮机主要设计技术特点1.1汽轮机主要技术规范7MW系列9MW系列18MW系列30MW系列额定功率MW7.591830功率等级范围MW6~128~1217~2425~32额定主蒸汽压力MPa.a1.050.6890.6890.689主蒸汽温度℃320317315~330312~330主汽压力范围MPa.a0.981~1.27补汽压力0.12~0.250.12~0.1370.11~0.140.12~0.14补汽流量t/h1~51~61~63~11给水温度℃35~4535~4535~4535~45汽耗kg/kW.h5.685.615.65.58热耗kJ/kW.h16285168451607516458汽轮机级数119910末级叶片叶片长度mm300330485665汽轮机本体重量t~46.5~45~6192配汽方式节流调节节流调节节流调节节流调节回热系统无无无无1.2通流部分设计技术特点水泥窑低温余热汽轮机通流部分的设计,在技术方面最突出的特点是采用当代更为先进的、在成熟的全三维技术基础上开发的、具有当代国际领先水平的准四维/全四维技术,对通流部分及主汽阀、调节阀、汽缸等各部分主蒸汽流经的部位进行全面系统设计,达到节约能源、降低消耗、提高经济性和增加出力(在同等主蒸汽流量下)的目的。(1)采用先进的非数值优化方法(遗传算法)与常规的数值优化方法相结合,针对不同工作条件下的叶片型线进行优化设计。使得叶片型线损失很小;叶片前缘设计使得叶片对来流攻角变化不敏感;较薄的叶片尾缘减小了叶片的尾迹损失;较大的叶片最大厚度增强了叶片的刚性。(2)末几级采用弯扭联合成型静叶栅。改变静叶栅内部的流场,减小叶片损失,从而大幅度提高汽轮机的级效率。(3)通流部分子午面光顾。光滑顺畅的子午面型线可以减小因子午面形状突变而带来的额外损失。(4)动叶自带围带整圈联接。通过预扭装配使动叶片形成整圈联接,可以使动叶片振动应力减小,不存在铆接造成的应力集中,运行安全可靠。(5)采用新一代梳齿式汽封。经过多年实验研究,及国内外机组实际运行经验表明,梳齿式汽封是密封效果最好的结构形式。梳齿式汽封以其特有的扰流作用,最大限度的减小漏汽,尤其是在冲动式汽轮机。(6)全部采用焊接隔板。焊接隔板刚性好,强度大,能够保证静叶内汽道形状准确,光洁度高。1.3汽轮机结构设计技术特点汽轮机采用节流调节,无调节级。汽轮机转子根据进汽参数和功率的不同分别由9、10、11个压力级组成。采用组合套装结构。汽缸前端借助于“猫爪”与前轴承座相连,在垂直方向设有定位左右膨胀的垂直键,以保证轴承座在膨胀时中心不致变动。前轴承座坐于前座架上,前座架上装有热膨胀传感器,以反映汽轮机静子部分的热膨胀。后汽缸则支承在左右两侧的后座架上,在左右后座架与后缸连接面上设有横销,与汽轮机轴中心线的交点构成汽缸热膨胀的死点。前轴承座内装有测速机构,主油泵,危急遮断装置,轴向位移传感器,径向及推力联合轴承。后轴承座与后汽缸一体,装有汽轮机后轴承和发电机前轴承。30MW系列仅装有汽轮机后轴承。后轴承盖上装有汽轮机盘车装置。盘车装置由电动机驱动,通过蜗轮蜗杆副及齿轮减速达到所需要的盘车速度。当转子的转速高于盘车速度时,盘车装置能自动退出工作位置。在无电源的情况下,在盘车电动机的后轴伸装有手轮,可以进行手动盘车。水泥炉窑余热锅炉产生的低压蒸汽经电动隔离阀进入位于汽轮机前部的一个或者两个主汽调节联合汽阀,通过主蒸汽管路,由前汽缸下部进入前汽缸蒸汽室,经若干级作功后,与补汽混合,再经后几级压力级作功后排入凝汽器凝结成水,借助于凝结水泵打出,经汽封加热器及除氧器后,再重新进入余热锅炉。1.3.1汽缸的设计该系列汽轮机的汽缸,根据功率的不同,分为两种组合形式:汽缸前部(前汽缸)和排汽缸(后汽缸)两段组成;汽缸前部(前汽缸)、汽缸中部(中汽缸)和排汽缸(后汽缸)三段组成。各部分之间采用垂直中分面和螺栓联接。汽缸分为上下两半,前后分别装有汽封,以保证蒸汽不外泄漏。前汽缸在下半前端有支承猫爪与前轴承座联接,前汽缸前猫爪采用下猫爪中分面支承方式,消除了机组运行中汽缸中心抬高问题。前缸内铸有蒸汽室,蒸汽室为全周进汽,下部有两个进汽口与主蒸汽管道焊接联接到主汽调节联合汽阀。由于采用节流调节,改变了常规电站中、小机组群阀控制或凸轮配汽的方式;没有回热抽汽,减少了下半抽汽口,前汽缸的结构十分简单,接近薄壁圆筒型,使得在启动和运行过程中,受热均匀,膨胀稳定。该系列汽轮机为双压汽轮机,中间有一部分更低压力的饱和蒸汽,进入汽轮机,与主流蒸汽混合后,继续做功。为了保证低压饱和蒸汽能与主流蒸汽很好的混合,不影响机组的正常运行。也就是说为使补汽顺利进入汽轮机,真正实现双压运行。在汽缸的设计中,除设有补汽进汽口外,在缸体上适当增加汽室空间,使补汽进入汽缸后,可迅速扩散,减少对主流蒸汽的扰动冲击,稳定的流向后几级,完成作功使命。低压缸基本借用常规电站汽轮机高一功率等级汽轮机的低压缸。如7MW系列、9MW系列的汽轮机,用常规电站15MW等级汽轮机的后汽缸;18MW系列的汽轮机用常规电波30MW等级汽轮机的后汽缸;30MW系列的汽轮机用常规电站50MW等级汽轮机的后汽缸。1.3.2汽轮机配汽的设计水泥炉窑余热发电用汽轮机为了快速启动,而且能够在滑压方式下运行,要求汽轮机的配汽能够满足这样的要求。常规中小汽轮机采用喷嘴配汽,这种配汽方式在空载和低负荷时只有部分进汽度,这种情况对汽机暖机不利,特别在快速启动时尤为明显,为此在设计配汽时,进汽部分的控制不再采用普通的喷嘴调节方式,而是采用全部喷嘴同时进汽的节流调节控制方式,汽机启动时靠调节阀控制转速,使发电机并网;正常运行时,调节阀全开,汽轮机处于滑压运行状态。此种进汽方式使汽轮机进汽部分始终处于均匀受热状态,这样就能满足在整个启动过程,及低负荷时能够保证汽机进汽均匀,以利于汽机快速启动,特别在汽机利用调节汽阀自动升速启动时。同时这也为汽机自动启动奠定了基础。1.3.3主汽调节联合汽阀的设计主汽调节联合汽阀布置在汽轮机头部运转层上。分为单主汽调节联合汽阀和双主汽调节联合汽阀。单主汽调节联合汽阀,位于汽轮机轴中心线上,双主汽调节联合汽阀,布置于轴中心线的两侧。汽阀用刚性座架安装在基础上。主汽阀分为立式与卧式两种,调节汽阀为立式布置。两阀阀壳铸为一体,使结构紧凑。联合汽阀在水平方向铸有四个支脚,整个汽阀靠此支撑在构架上,受热膨胀时,汽阀在构架中以其中一个脚为死点,其余三个脚可以在平面内滑动。汽阀构架是用钢板焊接而成的,座落在汽轮机运行平台的基础上,用螺栓加以固定。主汽阀为单座球形阀,阀碟的端部为半球形。启动时,先打开预启阀,减小阀碟前后的压差,从而减小了阀门的提升力。阀座与阀壳采用热压装配保证过盈,阀座带有一段扩散段减少蒸汽流动损失。预启阀开足后阀杆继续移动带动阀碟开启。阀碟上方由定位块固定,主汽阀开到位后定位块与阀盖配合紧密完全吻合,达到了密封的效果。阀盖向下延伸一部分作为阀碟套筒,在阀碟开启过程中能起到导向作用。在套筒与阀碟间又装有平键以防止阀碟在汽流冲击下旋转。阀杆外装有阀杆套筒和隔离套,两个隔离套形成两个抽汽腔室,第一段隔离套形成的抽汽腔室引出的也就是阀杆的一次漏汽,与补汽管道相连。第二段隔离套形成的抽汽腔室引出的也就是阀杆的二次漏汽,与汽封抽汽器相连。因而不会使漏汽漏入汽机房,同时又充分利用了漏汽的热量。阀杆和阀杆套筒的表面均经过氮化以提高耐磨性。在阀碟外装有一个蒸汽滤网,网板是用不锈钢板卷成的圆筒,上边钻有若干个小孔,能防止汽流中的机械杂质进入汽轮机的通流部分。调节汽阀有阀碟、阀座、阀杆汽封、阀套等零件。阀盖用双头螺栓、罩螺母坚固在阀壳上,其阀盖与阀壳的密封面上不放垫片,而以表面加工精度和研磨的方法来保证汽密性。阀碟与阀座的配合部分为球形截面。阀座上的配合部分为的锥体,下面带有一个扩散段,减少了流动损失。在阀盖上用销子固定有一个阀套,套在阀碟外面,阀碟外圆有汽封槽。阀碟内一个预启阀。阀碟上部空间为卸载室,设计中选用卸载直径与阀碟配合直径相同的结构,达到了100%卸载,减小了阀门提升力。阀座与阀壳采用热压装配保证过盈。阀座与阀壳另被两个径向对置的圆柱销固定,保证在运行中阀座不松动。阀杆汽封和隔离套抽汽形式及去向与主汽阀相同。1.3.4补汽结构的设计双压式汽轮机,补汽能否真正投入,是汽轮机能否实现双压运行的关键所在。在我们所设计的用于水泥炉窑低温余发电汽轮机投运之前,国内也有过水泥窑低温余热发电双压(带补汽)汽轮机投入运行,但补汽不能真正投入,实际都是单压运行,没有达到最初的设计要求,影响整个电站的出力,降低了经济效益。我公司在设计该类汽轮机之前,已经设计制造了用于燃气-蒸汽联合循环装置的双压(带补汽)汽轮机,并且运行情况良好,真正实现了双压运行。我们在设计制造水泥断窑低温余热发电汽轮机的过程中,充分利用我们已有的成功经验,结合该类汽轮机补汽压力更低、饱和蒸汽及补汽量小的特殊要求,设计出了名符其实的双压汽轮机。首先,我们在设计汽缸时(如前所述)加大了补汽进入的汽室空间,以使补汽进入汽缸后能够迅速扩散,减少对主流蒸汽的冲击,使汽流尽量均匀流动。其二,补汽为饱和蒸汽,相对湿度较大。为了防止过多的水滴进入汽机,影响主流蒸汽。在补汽进入口增加了防水滴滤网,减少了进入汽缸内的水滴。其三,由于运行的的状况千变万化,补汽投入时,补汽温度与补汽口的主流蒸汽温度,尤其是与补汽口汽缸壁温度有较大的温度差别。因此,补汽通过补汽口进入汽缸,将使汽缸壁温度降低,造成上下缸温差增加,膨胀不均匀,甚至使机组振动增大,影响机组安全、稳定运行。为避免补汽通过汽缸进汽口进入汽轮机时,使汽缸壁温降低,设计时在补汽进汽口增加导汽管,使补汽通过导汽管直接进入汽缸,补汽不直接与进汽口汽缸壁接触,从而保证汽缸壁温不因补汽进入而发生较大的变化。保证补汽能顺利的投入,实现双压运行。1.4凝汽器的设计水泥炉窑余热发电用汽轮发电机组,其运行方式与常规电站汽轮发电机组相似,带基本负荷长期运行。不需要象调峰机组频繁启停。但由于是用水泥炉窑窑头窑尾余热所产生的废汽作工质,且废汽的产生是连续的。但汽轮机并不能立即启动,当锅炉压力、温度达到一定值时汽轮机才能投入启动,由于汽机结构、强度等原因汽机启动比较慢,在冷态时更如此,由于汽机启动时耗汽量较小,余热锅炉产生的蒸汽,除少部分进入汽轮机冲转外,其余部分若不回收,将对空排放,是必造成能源浪费,同时产生很大的噪声,不符合环保要求。因此,系统通常均设有旁路系统,回收多余蒸汽。在电站汽机热力系统设计时一般采用在汽机主汽门前加装一套旁路系统,通过一级减温减压阀,然后再通入冷凝器,由于一级减温减压之后蒸汽参数仍然较高,为此在设计冷凝器时在其喉部设计一个二级减温减压装置,将一级减温减压后的蒸汽再次减温减压后排入冷凝器。由于有了旁路系统,汽轮机滑参数启动更加方便可行,并使得整个电站启动时间大大缩短。同时考虑水泥炉窑余热发电站运行时,汽机故障停机,而这时水泥生产线、余热锅炉仍然在运行,一般仍要求凝汽器能接受这部分蒸汽。从热力角度,常规冷凝器将不满足要求,设计的冷凝器体积较常规的要大。本机组凝汽器带有主蒸汽第二级减温减压器,补汽由于压力较低,通过管路直接拉入凝汽器。1.5控制系统的设计该类型汽轮机采用数字电液调节系统。DEH-NTK数字电液调节系统是我公司自主开发的一种经过实践运行考核的成熟的电调系统,其性能指标和功能充分满足用户需求。其数字电子部分由一个电子控制柜及操作员站等组成,该系统设备将DEH、ETS一体化设计供货,运转层上汽机信号的监测控制和保护全部进入DEH系统从而实现控制、监测和保护一体化,同时控制系统参数在线可调,极大方便了运行人员。液压部分由伺服执行机构、保安系统、及供油系统组成。电液调节系统各执行机构均由电液转换器及油动机组成,完成控制器的指令控制相应阀门开度;保安系统完成手动停机、机械超速及接受ETS保护电磁阀停机;供油系统包括低压主油泵供油系统及伺服阀专用供油系统:低压供油系统提供润滑、保安部套及油动机动作的供油;伺服阀专用供油系统向伺服阀供油。DEH控制系统的主要功能:自动挂闸;伺服系统表态试验;启动前的控制;转速控制;负荷控制;并网带初负荷;负荷反馈控制;一次调频;CCS控制;负荷限制;快速减负荷;阀位控制;主汽压控制;主汽压力低保护;补汽控制;在线试验;可以在工程师站进行参数修改、组态;具有完整的数据记录、显示及打印功能。2.机组运行状况在为海螺水泥集团提供水泥炉窑低温余热汽轮发电机组之前,我公司已为冀东水泥厂提供了两套用于AQC炉余热利用的双压(带补汽)凝汽式汽轮发电机组。功率为别为12MW和15MW,目前机组运行情况良好。2005年6月我公司与海螺水泥集团签订了11套水泥炉窑低温余热发电汽轮发电机组,功率等级分别为9MW、18MW和30MW。分别用于8家水泥厂的11条生产线。2006年7月首台海螺宁国水泥厂9MW汽轮电机组投产发电,机组出力达到并超过设计功率。至今机组运行状况良好,发电成本显著降低。2006年10月,海螺建德水泥厂9MW汽轮发电机组投产发电;同年11月海螺池州水泥厂首台18MW汽轮发电机组并网发电,最高功率达19MW。今年1月底,海螺铜陵水泥厂18MW汽轮发电机组投产发电。2月底,海螺枞阳水泥厂一号机18MW汽轮发电机组又正式并网发电。后续机组正在安装调试或在加工生产装配中。已投运的5台机组振动均达到优秀。机组的经济性达到设计保证值,最大连续出力达到或超过设计值,具有良好的鸾负荷性能。经济效益和社会效益相当可观。3.结束语充分利用水泥生产过程中的废气余热建设纯低温的余热发电装置,既可大量回收和充分利用低品质的余热用以发电或热电联供,以降低水泥生产的电耗,节约能源,又可有效的减少水泥生产对环境的污染,等同于火力发电厂,还具有减少二氧化硫排放的功效,已经成为目前国内水泥工业节能降耗、改善环境状况的有效途径。相对于补燃型的资源综合利用电站而言,利用水泥窑纯低温废气余热所建设的电站不配置任何燃烧设备,所以也不增加任何的烟气、粉尘和废渣的排放点,因此,具有更好的节能和环保效果。由于窑头和窑尾的废气温度较低,采用纯低温余热进行发电,对装备和系统技术的要求较高。受水泥生产工艺流程、原料特性、主机设备选型、气候条件等诸多因素的制约,相同规模的水泥生产线,其余热品质和余热量不尽相同。因此,尽管针对纯低温余热进行回收并进行发电的理论技术基本一致,但纯低温余热发电系统的规模和配置、系统参数、设备性能和特性则不完全相同。江苏鹏飞鹏飞集团江苏鹏飞集团回转窑窑炉水泥磨管磨机球磨机烘干机干燥机破碎机收尘器水泥水泥工艺水泥技术水泥粉磨水泥工程水泥机械水泥设备水泥成套设备水泥机械设备水泥机械成套设备建材机械建材装备化工设备电力设备冶金设备矿山机械矿渣电力机械设备水泥生产线新型干法节能管磨机辊压机增湿塔钛白粉窑氧化球团工业炉窑中国水泥复合肥设备化工机械矿山设备收尘设备环保设备水泥工业设计院水泥装备水泥标准水泥情报水泥价格水泥熟料硅酸盐石灰石石膏旋窑烧结炉矿渣磨原料磨生料磨风扫煤磨风扫磨煤磨造粒机破碎设备输送机电气控制系统国家级新产品优质产品高新技术产品冶金矿山重型设备重型机械磨煤机冷却机板式喂料机水泥成套设备出口水泥机械成套设备出口基地2500t/d新型干法水泥生产线5000t/d新型干法水泥生产线8000t/d新型干法水泥生产线节能粉磨设备....
销售热线
139-1285-1990